Constructing special almost disjoint families

Dilip Raghavan

National University of Singapore

Winter School in Abstract Analysis, International Center for Spiritual Rehabilitation, Hejnice January 30, 2014

イロト イポト イヨト イヨト

2 Recent Progress

Dilip Raghavan Constructing special almost disjoint families

イロト イロト イヨト イヨト

Definitions and motivations

- We say that two infinite subsets *a* and *b* of ω are almost disjoint or a.d. if a ∩ b is finite.
- We say that a family 𝖉 ⊂ [ω]^ω is almost disjoint or a.d. if its members are pairwise almost disjoint.
- A *Maximal Almost Disjoint family, or MAD family* is an infinite a.d. family that is not properly contained in a larger a.d. family.
- Equivalently, an infinite a.d. family $\mathscr{A} \subset [\omega]^{\omega}$ is MAD iff $\forall b \in [\omega]^{\omega} \exists a \in \mathscr{A} [|b \cap a| = \omega].$

イロト イタト イヨト イヨト

Definitions and motivations

- By Zorn's Lemma, any infinite a.d. family can be extended to a MAD family.
- This construction usually doesn't allow us to control other combinatorial properties of A.

イロト イポト イヨト イヨト

Definitions and motivations

- By Zorn's Lemma, any infinite a.d. family can be extended to a MAD family.
- This construction usually doesn't allow us to control other combinatorial properties of *A*.
- For example the size of *A*.
- If we want to make |A| as large as possible, then we can, but we need an intermediate step.

Definitions and motivations

- By Zorn's Lemma, any infinite a.d. family can be extended to a MAD family.
- This construction usually doesn't allow us to control other combinatorial properties of *A*.
- For example the size of *A*.
- If we want to make |A| as large as possible, then we can, but we need an intermediate step.
- Identify ω with 2^{<ω}. Then the branches form an a.d. family of size c. Extend it to a MAD family.

イロト イポト イヨト イヨト

Definitions and motivations

• How small can a MAD family be?

イロト イロト イヨト イヨト

Э.

Definitions and motivations

• How small can a MAD family be?

Definition

 $\mathfrak{a} = \min\{|\mathscr{A}| : \mathscr{A} \subset [\omega]^{\omega} \text{ and } \mathscr{A} \text{ is a MAD family}\}.$

- The value of a is not decided in ZFC.
- There are several such cardinal invariants.
- Play a crucial role in many combinatorial constructions.
- Usually take the form of the least size of a family of a certain sort.

(日)

Definitions and motivations

- for $a, b \in \mathcal{P}(\omega)$, a splits b if $|a \cap b| = |(\omega \setminus a) \cap b| = \omega$.
- $F \subset \mathcal{P}(\omega)$ is called a *splitting family* if $\forall b \in [\omega]^{\omega} \exists a \in F [a \text{ splits } b]$.

イロト イポト イヨト イヨト

Definitions and motivations

- for $a, b \in \mathcal{P}(\omega)$, a splits b if $|a \cap b| = |(\omega \setminus a) \cap b| = \omega$.
- $F \subset \mathcal{P}(\omega)$ is called a *splitting family* if $\forall b \in [\omega]^{\omega} \exists a \in F [a \text{ splits } b]$.

Definition

 $\mathfrak{s} = \min\{|F| : F \subset \mathcal{P}(\omega) \text{ and } F \text{ is a splitting family}\}.$

Definitions and motivations

- for $a, b \in \mathcal{P}(\omega)$, a splits b if $|a \cap b| = |(\omega \setminus a) \cap b| = \omega$.
- $F \subset \mathcal{P}(\omega)$ is called a *splitting family* if $\forall b \in [\omega]^{\omega} \exists a \in F [a \text{ splits } b]$.

Definition

 $\mathfrak{s} = \min\{|F| : F \subset \mathcal{P}(\omega) \text{ and } F \text{ is a splitting family}\}.$

- A family $F \subset \omega^{\omega}$ is called *unbounded* if it has no upper bound in $\langle \omega^{\omega}, \leq^* \rangle$.
- $F \subset \omega^{\omega}$ is called *dominating* if it is cofinal in $\langle \omega^{\omega}, \leq^* \rangle$.

Definitions and motivations

- for $a, b \in \mathcal{P}(\omega)$, a splits b if $|a \cap b| = |(\omega \setminus a) \cap b| = \omega$.
- $F \subset \mathcal{P}(\omega)$ is called a *splitting family* if $\forall b \in [\omega]^{\omega} \exists a \in F [a \text{ splits } b]$.

Definition

 $\mathfrak{s} = \min\{|F| : F \subset \mathcal{P}(\omega) \text{ and } F \text{ is a splitting family}\}.$

- A family $F \subset \omega^{\omega}$ is called *unbounded* if it has no upper bound in $\langle \omega^{\omega}, \leq^* \rangle$.
- $F \subset \omega^{\omega}$ is called *dominating* if it is cofinal in $\langle \omega^{\omega}, \leq^* \rangle$.

Definition

 $\mathfrak{b} = \min\{|F| : F \subset \omega^{\omega} \text{ is an unbounded family}\}.$

 $\mathfrak{d} = \min\{|F| : F \subset \omega^{\omega} \text{ is a dominating family}\}.$

Definitions and motivations

Definition

For any family $\mathscr{A} \subset \mathscr{P}(\omega)$, the ideal generated by \mathscr{A} (together with the Fréchet ideal) is denoted by $\mathcal{I}(\mathscr{A})$.

Definition

For any ideal I on ω , I^+ denotes $\mathcal{P}(\omega) \setminus I$. The sets in I^+ are called I-positive. I^* denotes $\{\omega \setminus a : a \in I\}$, this is the dual filter to I. An ideal I is said to be tall if $\forall b \in [\omega]^{\omega} \exists a \in [b]^{\omega} [a \in I]$.

Definitions and motivations

Definition

For any family $\mathscr{A} \subset \mathscr{P}(\omega)$, the ideal generated by \mathscr{A} (together with the Fréchet ideal) is denoted by $\mathcal{I}(\mathscr{A})$.

Definition

For any ideal I on ω , I^+ denotes $\mathcal{P}(\omega) \setminus I$. The sets in I^+ are called I-positive. I^* denotes $\{\omega \setminus a : a \in I\}$, this is the dual filter to I. An ideal I is said to be tall if $\forall b \in [\omega]^{\omega} \exists a \in [b]^{\omega} [a \in I]$.

• We are interested in almost disjoint families for which $I(\mathscr{A})$ enjoys certain strong properties.

Definitions and motivations

• If \mathscr{A} is a.d., then $\mathcal{I}^+(\mathscr{A})$ always has a strong combinatorial property.

Theorem

If $\mathscr{A} \subset \mathscr{P}(\omega)$ is an infinite a.d. family, then $\mathcal{I}^+(\mathscr{A})$ is a selective co-ideal.

Definitions and motivations

• If \mathscr{A} is a.d., then $\mathcal{I}^+(\mathscr{A})$ always has a strong combinatorial property.

Theorem

If $\mathscr{A} \subset \mathscr{P}(\omega)$ is an infinite a.d. family, then $\mathcal{I}^+(\mathscr{A})$ is a selective co-ideal.

• This essentially means that $I^*(\mathscr{A})$ "can be" extended to a Ramsey ultrafilter.

Definition

 I^+ is called a selective coideal if for every sequence $e_0 \supset e_1 \supset \cdots$, with $e_i \in I^+$, there is an $e = \{n_0 < n_1 < \cdots\} \in I^+$ such that $n_0 \in e_0$ and $n_{i+1} \in e_{n_i}$ for each *i*.

イロト イロト イヨト イヨト

Definitions and motivations

• The main point is the following:

Lemma

Suppose \mathscr{A} is an a.d. family. Suppose $b \subset \omega$ and $\exists^{\infty} a \in \mathscr{A} [|a \cap b| = \omega]$. Then $b \in I^+(\mathscr{A})$

イロト イポト イヨト イヨト

Definitions and motivations

• The main point is the following:

Lemma

Suppose \mathscr{A} is an a.d. family. Suppose $b \subset \omega$ and $\exists^{\infty} a \in \mathscr{A} [|a \cap b| = \omega]$. Then $b \in I^+(\mathscr{A})$

Proof.

If $b \in I(\mathscr{A})$, then there exist $a_0, \ldots a_k \in \mathscr{A}$ such that $b \subset^* a_0 \cup \cdots \cup a_k$. By hypothesis, there is $a \in \mathscr{A} \setminus \{a_0, \ldots, a_k\}$ such that $a \cap b$ is infinite. However $a \cap b$ is a.d. from $a_0 \cup \cdots \cup a_k$ and yet $a \cap b \subset b \subset^* a_0 \cup \cdots \cup a_k$. This is a contradiction.

Definitions and motivations

- We are interested in families where there is a strong combinatorial relationship between A and I⁺(A).
- A typical example is the following:

Definition

An almost disjoint family \mathscr{A} is tight (also called \aleph_0 -MAD) if for any $\{b_n : n \in \omega\} \subset I^+(\mathscr{A})$, there is $a \in \mathscr{A}$ such that $\forall n \in \omega [|a \cap b_n| = \aleph_0]$.

- This asks for a σ -version of maximality.
- It is also connected with the notion of indestructible MAD families.

Definitions and motivations

Definition

Let \mathbb{P} be a notion of forcing. A MAD family $\mathscr{A} \subset [\omega]^{\omega}$ is called \mathbb{P} -indestructible if $\Vdash_{\mathbb{P}} \mathscr{A}$ is MAD.

Definitions and motivations

Definition

Let \mathbb{P} be a notion of forcing. A MAD family $\mathscr{A} \subset [\omega]^{\omega}$ is called \mathbb{P} -indestructible if $\Vdash_{\mathbb{P}} \mathscr{A}$ is MAD.

- Obviously, if ℙ does not add reals, then every MAD 𝔄 is ℙ-indestructible.
- If a MAD 𝖉 ⊂ [ω]^ω is indestructible for any ℙ that adds a real, then 𝒜 is also Sacks indestructible.

Theorem

Every tight a.d. family is Cohen-indestructible. If a MAD family \mathscr{A} is Cohen-indestructible, then for some $X \in \mathcal{I}^+(A)$, $\mathscr{A} \upharpoonright X = \{X \cap a : a \in \mathscr{A}\}$ is tight.

Definitions and motivations

Definition

An a. d. family \mathscr{A} is called weakly tight if for all $\{b_n : n \in \omega\} \subset I^+(\mathscr{A})$, there is $a \in \mathscr{A}$ such that $\exists^{\infty} n \in \omega [|a \cap b_n| = \aleph_0]$.

- This is a natural weakening of tight investigated by [1].
- It is connected to the Katetov order on a.d. families.

(日)

Definitions and motivations

Definition

An a.d. family \mathscr{A} is called Laflamme if \mathscr{A} is not contained in any F_{σ} ideal on ω .

Considered by Laflamme in 1992 [2] (in connection with destroying MAD families without adding unbounded reals).

Definitions and motivations

Definition

An a.d. family \mathscr{A} is called Laflamme if \mathscr{A} is not contained in any F_{σ} ideal on ω .

Considered by Laflamme in 1992 [2] (in connection with destroying MAD families without adding unbounded reals).

Theorem

If I is any F_{σ} ideal on ω , then there is a proper ω^{ω} -bounding forcing \mathbb{P}_{I} which adds an element of $[\omega]^{\omega}$ that is almost disjoint from every element of $\mathbf{V} \cap I$.

Definitions and motivations

- Laflamme's questions is related to the problem of whether
 δ =
 ⁸
 ¹
 implies
 a =
 ⁸
 1.
- If you can get all MAD families to be contained in F_σ ideals, then you could hope to increase a without increasing δ.
- We will see that when $b = \aleph_1$, Laflamme families exist.

Definitions and motivations

Definition

An *a*. *d*. family is called completely separable if $\forall b \in I^+(\mathscr{A}) \exists a \in \mathscr{A} [a \subset b]$.

Definitions and motivations

Definition

An a. d. family is called completely separable if $\forall b \in \mathcal{I}^+(\mathscr{A}) \exists a \in \mathscr{A} [a \subset b]$.

 This question has a long history. It is connected with the existence of ADRs.

Definition

Given $\mathscr{C} \subset [\omega]^{\omega}$, we say that a family $\mathscr{A} = \{a_c : c \in \mathscr{C}\} \subset [\omega]^{\omega}$ is an almost disjoint refinement (ADR) of \mathscr{C} if

•
$$\forall c \in \mathscr{C} [a_c \subset c]$$

• $\forall c_0, c_1 \in \mathscr{C} [c_0 \neq c_1 \implies |a_{c_0} \cap a_{c_1}| < \omega]$

Definitions and motivations

Fact

Some facts:

- If $\mathscr{C} \subset [\omega]^{\omega}$ has an ADR, then there is tall ideal I such that $I \cap \mathscr{C} = 0$.
- *I*⁺ has an ADR for every tall *I* iff for every tall *I* there is a completely separable *A* ⊂ *I*.
- If A is completely separable, then for every b ∈ I⁺(A), there are c many a ∈ A such that a ⊂ b.

Definitions and motivations

Basic Question

When do these a. d. families exist? Do any of them exist in ZFC?

Dilip Raghavan Constructing special almost disjoint families

Definitions and motivations

Basic Question

When do these a. d. families exist? Do any of them exist in ZFC?

- They all exist under CH.
- In these talks we will first survey some of the recent progress on proving existence.
- Then we focus on completely separable and on weakly tight families.
- Both types of families exist if $c < \aleph_{\omega}$ (full proofs, time permitting).

Recent progress

Theorem (Shelah[3], 2010)

If $c < \aleph_{\omega}$, then there is a completely separable a. d. family.

Dilip Raghavan Constructing special almost disjoint families

イロト イロト イヨト イヨト

Recent progress

Theorem (Shelah[3], 2010)

If $c < \aleph_{\omega}$, then there is a completely separable a. d. family.

- The proof is in 3 cases:
 - 🚺 5 < a
 - 2 $\mathfrak{s} = \mathfrak{a} + \mathfrak{a}$ certain PCF-type assumption holds.
 - 3 $\alpha < \mathfrak{s} + a$ different PCF-type assumption holds.

Recent progress

Theorem (Shelah[3], 2010)

If $c < \aleph_{\omega}$, then there is a completely separable a. d. family.

- The proof is in 3 cases:
 - 🚺 5 < a
 - 2 $\mathfrak{s} = \mathfrak{a} + \mathfrak{a}$ certain PCF-type assumption holds.
 - 3 $\alpha < \mathfrak{s} + \mathfrak{a}$ different PCF-type assumption holds.
- The PCF type assumptions both automatically hold if $c < \aleph_{\omega}$.
- This proof is the basis for all the recent progress.

Recent progress

• The PCF assumption can be eliminated from case 2 of Shelah's construction.

Theorem (Mildenberger, R., and Steprans)

If $s \leq a$, then there is a completely separable MAD family.

• The main point in this proof is that $\mathfrak{s} = \mathfrak{s}_{\omega,\omega}$.

イロト イポト イヨト イヨト

Recent progress

Theorem (R. and Steprans)

If $\mathfrak{s} \leq \mathfrak{b}$, then there is a weakly tight family.

イロト イロト イヨト イヨト

Recent progress

Theorem (R. and Steprans)

If $\mathfrak{s} \leq \mathfrak{b}$, then there is a weakly tight family.

I recently improved this to

Theorem (R.)

If $c < \aleph_{\omega}$, then there is a weakly tight family.

- The proof is broken down into 2 analogous cases:

 - 2 $\mathfrak{b} < \mathfrak{s} + \mathfrak{a}$ certain PCF type assumption.
- Again the PCF type assumption is automatically satisfied if c < ℵ_ω.

イロト イポト イヨト イヨト

Recent progress

Let us say that a family *F* ⊂ *P*(ω) is *F_σ* splitting if for each *F_σ* ideal *I* on ω, there exists *a* ∈ *F* such that both *a* and ω \ *a* are in *I*⁺.

Definition

 $\mathfrak{s}(\mathcal{F}_{\sigma}) = \min\{|\mathcal{F}| : \mathcal{F} \subset \mathcal{P}(\omega) \text{ is an } F_{\sigma} - \mathfrak{splitting family}\}.$

Recent progress

Let us say that a family *F* ⊂ *P*(ω) is *F_σ* splitting if for each *F_σ* ideal *I* on ω, there exists *a* ∈ *F* such that both *a* and ω \ *a* are in *I*⁺.

Definition

$$\mathfrak{s}(\mathcal{F}_{\sigma}) = \min\{|\mathcal{F}| : \mathcal{F} \subset \mathcal{P}(\omega) \text{ is an } F_{\sigma} - \mathfrak{splitting family}\}.$$

Definition

For a filter \mathcal{F} on ω , let

 $\mathfrak{p}(\mathcal{F}) = \{|X| : X \subset \mathcal{F} \text{ and } X \text{ does not have a pseudointersection in } \mathcal{F}^+\}$

Recent progress

Let us say that a family *F* ⊂ *P*(ω) is *F_σ* splitting if for each *F_σ* ideal *I* on ω, there exists *a* ∈ *F* such that both *a* and ω \ *a* are in *I*⁺.

Definition

$$\mathfrak{s}(\mathcal{F}_{\sigma}) = \min\{|\mathcal{F}| : \mathcal{F} \subset \mathcal{P}(\omega) \text{ is an } F_{\sigma} - \mathfrak{splitting family}\}.$$

Definition

For a filter \mathcal{F} on ω , let

 $\mathfrak{p}(\mathcal{F}) = \{|X| : X \subset \mathcal{F} \text{ and } X \text{ does not have a pseudointersection in } \mathcal{F}^+\}$

 $\mathfrak{p}(\mathcal{F}_{\sigma}) = \min\{\mathfrak{p}(\mathcal{F}) : \mathcal{F} \text{ is a tall } F_{\sigma} - \text{ filter}\}.$

イロト イポト イヨト イヨト

э.

Recent progress

- $\mathfrak{p}(\mathcal{F}_{\sigma})$ is consistently bigger than \mathfrak{d} .
- $\operatorname{add}(\mathcal{N}) \leq \mathfrak{p}(\mathcal{F}_{\sigma})$
- $\mathfrak{s}(\mathcal{F}_{\sigma}) \leq \min\{\max\{\mathfrak{b},\mathfrak{s}\}, \operatorname{non}(\mathcal{N})\}.$

Э.

Recent progress

- $\mathfrak{p}(\mathcal{F}_{\sigma})$ is consistently bigger than \mathfrak{d} .
- $\operatorname{add}(\mathcal{N}) \leq \mathfrak{p}(\mathcal{F}_{\sigma})$
- $\mathfrak{s}(\mathcal{F}_{\sigma}) \leq \min\{\max\{\mathfrak{b},\mathfrak{s}\}, \operatorname{non}(\mathcal{N})\}.$

Theorem (R.)

If $\mathfrak{s}(\mathcal{F}_{\sigma}) \leq \mathfrak{p}(\mathcal{F}_{\sigma})$, then there is a Laflamme family.

(日)

Recent progress

- $\mathfrak{p}(\mathcal{F}_{\sigma})$ is consistently bigger than \mathfrak{d} .
- $\operatorname{add}(\mathcal{N}) \leq \mathfrak{p}(\mathcal{F}_{\sigma})$
- $\mathfrak{s}(\mathcal{F}_{\sigma}) \leq \min\{\max\{\mathfrak{b},\mathfrak{s}\}, \operatorname{non}(\mathcal{N})\}.$

Theorem (R.)

- If $\mathfrak{s}(\mathcal{F}_{\sigma}) \leq \mathfrak{p}(\mathcal{F}_{\sigma})$, then there is a Laflamme family.
- 2 If $\mathfrak{b} \leq \mathfrak{p}(\mathcal{F}_{\sigma}) < \aleph_{\omega}$, then there is a Laflamme family.

Recent progress

- $\mathfrak{p}(\mathcal{F}_{\sigma})$ is consistently bigger than \mathfrak{d} .
- $\operatorname{add}(\mathcal{N}) \leq \mathfrak{p}(\mathcal{F}_{\sigma})$
- $\mathfrak{s}(\mathcal{F}_{\sigma}) \leq \min\{\max\{\mathfrak{b},\mathfrak{s}\}, \operatorname{non}(\mathcal{N})\}.$

Theorem (R.)

- If $\mathfrak{s}(\mathcal{F}_{\sigma}) \leq \mathfrak{p}(\mathcal{F}_{\sigma})$, then there is a Laflamme family.
- 2 If $\mathfrak{b} \leq \mathfrak{p}(\mathcal{F}_{\sigma}) < \aleph_{\omega}$, then there is a Laflamme family.

• There are 2 cases:

$$\mathfrak{s}(\mathcal{F}_{\sigma}) \leq \mathfrak{p}(\mathcal{F}_{\sigma})$$

2 $\mathfrak{b} \leq \mathfrak{p}(\mathcal{F}_{\sigma}) + a$ PCF-type assumption.

Recent progress

Corollary

- If $\mathfrak{b} = \mathfrak{s} = \mathfrak{K}_1$, then there is a Laflamme family.
- 2 If $non(N) = \aleph_1$, then there is a Laflamme family.

Question

Is there a Laflamme family assuming $c < \aleph_{\omega}$?

- What is still open is the case: $\mathfrak{p}(\mathcal{F}_{\sigma}) < \min\{b, \mathfrak{s}(\mathcal{F}_{\sigma})\}$.
- An interesting sub-question is what happens when b = c?

イロト イポト イヨト イヨト

Questions

Question

Is there a Sacks indestructible MAD family assuming $c < \aleph_{\omega}$?

- A MAD family $\mathscr{A} \subset [\omega]^{\omega}$ is Sacks indestructible iff for each 1-1 map $\Sigma : 2^{<\omega} \to \omega$, there exists $a \in \mathscr{A}$ such that $\exists^{c} f \in 2^{\omega} [|a \cap (\Sigma'' \{f \upharpoonright n : n \in \omega\})| = \omega].$
- If α < c, then any MAD family of size α is Sacks indestructible. So you can assume α = c for free.

Question

Can the general method be modified to construct MAD families in ω^{ω} with special properties?

イロト イポト イヨト イヨト

2

Bibliography

- M. Hrušák and S. García Ferreira, *Ordering MAD families a la Katétov*, J. Symbolic Logic **68** (2003), no. 4, 1337–1353.
- C. Laflamme, *Zapping small filters*, Proc. Amer. Math. Soc. **114** (1992), no. 2, 535–544.
- S. Shelah, MAD saturated families and SANE player, Canad. J. Math.
 63 (2011), no. 6, 1416–1435.

(日)